Finding gas diffusion pathways in proteins: application to O2 and H2 transport in CpI [FeFe]-hydrogenase and the role of packing defects.

نویسندگان

  • Jordi Cohen
  • Kwiseon Kim
  • Paul King
  • Michael Seibert
  • Klaus Schulten
چکیده

We report on a computational investigation of the passive transport of H2 and O2 between the external solution and the hydrogen-producing active site of CpI [FeFe]-hydrogenase from Clostridium pasteurianum. Two distinct methodologies for studying gas access are discussed and applied: (1) temperature-controlled locally enhanced sampling, and (2) volumetric solvent accessibility maps, providing consistent results. Both methodologies confirm the existence and function of a previously hypothesized pathway and reveal a second major pathway that had not been detected by previous analyses of CpI's static crystal structure. Our results suggest that small hydrophobic molecules, such as H2 and O2, diffusing inside CpI, take advantage of well-defined preexisting packing defects that are not always apparent from the protein's static structure, but that can be predicted from the protein's dynamical motion. Finally, we describe two contrasting modes of intraprotein transport for H2 and O2, which in our model are differentiated only by their size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The quest for a functional substrate access tunnel in FeFe hydrogenase.

We investigated di-hydrogen transport between the solvent and the active site of FeFe hydrogenases. Substrate channels supposedly exist and serve various functions in certain redox enzymes which use or produce O2, H2, NO, CO, or N2, but the preferred paths have not always been unambiguously identified, and whether a continuous, permanent channel is an absolute requirement for transporting diato...

متن کامل

Lyophilization protects [FeFe]-hydrogenases against O2-induced H-cluster degradation

Nature has developed an impressive repertoire of metal-based enzymes that perform complex chemical reactions under moderate conditions. Catalysts that produce molecular hydrogen (H2) are particularly promising for renewable energy applications. Unfortunately, natural and chemical H2-catalysts are often irreversibly degraded by molecular oxygen (O2). Here we present a straightforward procedure b...

متن کامل

A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism

BACKGROUND FeFe-hydrogenases are the most active class of H2-producing enzymes known in nature and may have important applications in clean H2 energy production. Many potential uses are currently complicated by a crucial weakness: the active sites of all known FeFe-hydrogenases are irreversibly inactivated by O2. RESULTS We have developed a synthetic metabolic pathway in E. coli that links Fe...

متن کامل

On the pathways feeding the H2 production process in nutrient-replete, hypoxic conditions. Commentary on the article “Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures”, by Jurado-Oller et al., Biotechnology for Biofuels, published September 7, 2015; 8:149

BACKGROUND Under low O2 concentration (hypoxia) and low light, Chlamydomonas cells can produce H2 gas in nutrient-replete conditions. This process is hindered by the presence of O2, which inactivates the [FeFe]-hydrogenase enzyme responsible for H2 gas production shifting algal cultures back to normal growth. The main pathways accounting for H2 production in hypoxia are not entirely understood,...

متن کامل

[FeFe]-Hydrogenase Abundance and Diversity along a Vertical Redox Gradient in Great Salt Lake, USA

The use of [FeFe]-hydrogenase enzymes for the biotechnological production of H2 or other reduced products has been limited by their sensitivity to oxygen (O2). Here, we apply a PCR-directed approach to determine the distribution, abundance, and diversity of hydA gene fragments along co-varying salinity and O2 gradients in a vertical water column of Great Salt Lake (GSL), UT. The distribution of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Structure

دوره 13 9  شماره 

صفحات  -

تاریخ انتشار 2005